| Roll Number | | |-------------|--| | | | SET B ## INDIAN SCHOOL MUSCAT FIRST MID TERM EXAMINATION MATHEMATICS CLASS: IX Sub. Code: 041 Time Allotted: 3 Hrs 24.09.2018 Max. Marks:80 ## **General Instructions:** - 1. All questions are **compulsory**. - 2. The question paper consists of 30 questions divided into four sections A, B, C and D. Section-A comprises of 6 questions of 1 mark each; Section-B comprises of 6 questions of 2 marks each; Section-C comprises of 10 questions of 3 marks each and Section-D comprises of 8 questions of 4 marks each. - 3. There is no overall choice in this question paper. - 4. Use of calculator is not permitted. ## **SECTION - A** | 1 | Simplify $(5+\sqrt{7})\times(5-\sqrt{7})$. | 1 | | | |-------------|--|---|--|--| | 2 | What is the degree of the polynomial $(m^2 + 3) \times (m^5)$. | 1 | | | | 3 | Two angles measure $(30^0 - a)$ and $(125^0 + 2a)$. If each one is the supplement of the other, then find the value of a. | 1 | | | | 4 | What is the mirror image of $(-3, -4)$ with respect to $x - axis$? | 1 | | | | 5 | Write SAS congruence rule for two triangles. | 1 | | | | 6 | The area of a triangle of altitude 12 cm is 72 cm ² . Find its base. | 1 | | | | SECTION - B | | | | | | 7 | If $a = 2$ and $b = 3$, then find the value of $a^b + b^a$. | 2 | | | | 8 | Write any 2 irrational numbers between 0.7 and 0.77. | 2 | | | | 9 | Find the value of k if x - 2 is a factor of $p(x) = x^2 + kx - 4k$. | 2 | | | | 10 | If $p(m) = m^2 - 3m + 4$, then what is the value of $p(1) + p(2)$? | 2 | | | | 11 | Solve the equation $x + 4 = 10$ and state Euclid's axiom used here. | 2 | | | | 12 | The semi perimeter of a triangle is 45 cm and the product of the differences of semi perimeter and its respective sides (in cm) is 4500. Find the area of the triangle | 2 | | | Express $0.24\overline{3}$ in the form of $\frac{p}{q}$ where 'p' and 'q' are integers and $q \neq 0$. OR If $a = 1 + \sqrt{2}$, find the value of $\left(a^2 - \frac{1}{a^2}\right)$. Represent $\sqrt{3}$ on the number line. Find the remainder, when $m^3 + m^2 + m + 1$ is divided by $\left(m - \frac{1}{2}\right)$ using remainder theorem. OR By actual division, find the quotient and remainder when $x^4 - 4x^3 + 4x^2 - 3x + 4$ is divided by (x-1). 16 Factorize: $x^4 - 125xy^3$ M and N are the two points lying between P and Q such that M is the midpoint of PQ and N is the midpoint of PM. Prove that $PN = \frac{1}{4}$ PQ. Explain it by drawing a figure. In the figure, AB||CD. Find the value of x, if $\underline{/BGE}=125^{0}$ and $\underline{/DFE}=120^{0}$. 3 3 3 3 3 In the given figure, line segments AB, CD and EF meet at O. Find the value of m and hence find all the three indicated angles. OR Prove that, if one angle of a Δ is equal to the sum of the other 2 angles, then the Δ is right angled Δ . Also find the measure of each of the other 2 angles if they are equal. Which Quadrant or axis do the following points lie: (0, -2), (1, 1), R(-2, -4), (-3, 7), (6, -4) and (5, 0)? In the given figure, $BA \perp CA$, $RP \perp QP$, AB = PQ and BR = CQ. Prove that AC = PR. AC is a diagonal of a quadrilateral ABCD. Prove that AB + BC + CD + DA > 2AC. Prove that angles opposite to equal sides of an isosceles triangle are equal. ## **SECTION - D** Find the value of a and b if $\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5 - \sqrt{3}}} = a + b\sqrt{15}$ - Evaluate using suitable identities: (i) 103×105 (ii) $(98)^3$ - 25 Factorize: $9m^3 3m^2 5m 1$. **OR** Using factor theorem, find the value of 'p' if $x^3 - px^2 - 14x + 24$ is exactly divisible by (x - 2). Hence factorize the polynomial. 26 State and prove angle sum property of a triangle. ΛŔ In the figure, $1 \parallel m$. Show that $\angle 1 + \angle 2 - \angle 3 = 180^{\circ}$ 3 4 4 - Plot (-2, -1), (5, -1) and (0, 4) on Cartesian plane. Name the figure formed by joining these points 4 and find the area of the figure so obtained. - In the figure, OA = OB, OC = OD and $\angle AOB = \angle COD$. Prove that AC = BD. Sides AB, BC and median AD of \triangle ABC are respectively equal to sides PQ, QR and median PM of \triangle APQR. Prove that \triangle ABC \cong \triangle PQR. OR In the figure, ABC and ABD are such that AD = BC, \angle CAD = \angle DBC and \angle CAB= \angle DBA. Prove that BD = AC. 30 The sides of a triangular park are in the ratio 3:5:7 and its perimeter is 300m. Find the cost of leveling the park at the rate of ₹10 per m² (Take $\sqrt{3} = 1.73$). **End of the Question Paper**