CLASS: IX

INDIAN SCHOOL MUSCAT
 FIRST MID TERM EXAMINATION MATHEMATICS

Sub. Code: 041
Time Allotted: 3 Hrs
24.09.2018

General Instructions:

1. All questions are compulsory.
2. The question paper consists of $\mathbf{3 0}$ questions divided into four sections A, B, C and D. Section-A comprises of $\mathbf{6}$ questions of $\mathbf{1}$ mark each; Section-B comprises of $\mathbf{6}$ questions of $\mathbf{2}$ marks each; Section\mathbf{C} comprises of $\mathbf{1 0}$ questions of $\mathbf{3}$ marks each and Section-D comprises of $\mathbf{8}$ questions of $\mathbf{4}$ marks each.
3. There is no overall choice in this question paper.
4. Use of calculator is not permitted.

SECTION - A

$1 \quad$ Simplify $(5+\sqrt{7}) \times(5-\sqrt{7})$.
2 What is the degree of the polynomial $\left(m^{2}+3\right) \times\left(m^{5}\right)$.
3 Two angles measure $\left(30^{\circ}-\mathrm{a}\right)$ and $\left(125^{\circ}+2 \mathrm{a}\right)$. If each one is the supplement of the other, then find the value of a.

4 What is the mirror image of $(-3,-4)$ with respect to $\mathrm{x}-$ axis?
5 Write SAS congruence rule for two triangles.
6 The area of a triangle of altitude 12 cm is $72 \mathrm{~cm}^{2}$. Find its base.

SECTION - B

7 If $\mathrm{a}=2$ and $\mathrm{b}=3$, then find the value of $a^{b}+b^{a}$.
$8 \quad$ Write any 2 irrational numbers between 0.7 and 0.77 .
9 Find the value of k if $x-2$ is a factor of $p(x)=x^{2}+k x-4 k$.
10 If $p(m)=m^{2}-3 m+4$, then what is the value of $p(1)+p(2)$?
11 Solve the equation $\mathrm{x}+4=10$ and state Euclid's axiom used here.
12 The semi perimeter of a triangle is 45 cm and the product of the differences of semi perimeter and its respective sides (in cm) is 4500 . Find the area of the triangle

SECTION - C

13
Express $0.24 \overline{3}$ in the form of $\frac{p}{q}$ where ' p ' and ' q ' are integers and $q \neq 0$.

OR

If $\mathrm{a}=1+\sqrt{2}$, find the value of $\left(a^{2}-\frac{1}{a^{2}}\right)$.
14 Represent $\sqrt{3}$ on the number line.
Find the remainder, when $\mathrm{m}^{3}+\mathrm{m}^{2}+\mathrm{m}+1$ is divided by $\left(m-\frac{1}{2}\right)$ using remainder theorem.

OR

By actual division, find the quotient and remainder when $x^{4}-4 x^{3}+4 x^{2}-3 x+4$ is divided by ($x-1$).

16 Factorize: $\mathrm{x}^{4}-125 \mathrm{xy}^{3}$
$17 \quad \mathrm{M}$ and N are the two points lying between P and Q such that M is the midpoint of PQ and N is the midpoint of PM . Prove that $\mathrm{PN}=\frac{1}{4} \mathrm{PQ}$. Explain it by drawing a figure.

18 In the figure, $\mathrm{AB} \| \mathrm{CD}$. Find the value of x , if $/ \underline{\mathrm{BGE}}=125^{\circ}$ and $/ \underline{\mathrm{DFE}}=120^{\circ}$.

OR

Prove that, if one angle of a Δ is equal to the sum of the other 2 angles, then the Δ is right angled Δ. Also find the measure of each of the other 2 angles if they are equal.

20 Which Quadrant or axis do the following points lie: $(0,-2),(1,1), R(-2,-4),(-3,7),(6,-4)$ and $(5,0)$?

21 In the given figure, $\mathrm{BA} \perp \mathrm{CA}, \mathrm{RP} \perp \mathrm{QP}, \mathrm{AB}=$ $P Q$ and $B R=C Q$. Prove that $A C=P R$.

$22 A C$ is a diagonal of a quadrilateral $A B C D$. Prove that $A B+B C+C D+D A>2 A C$.
OR
Prove that angles opposite to equal sides of an isosceles triangle are equal.

SECTION - D

23

25 Factorize : $9 m^{3}-3 m^{2}-5 m-1$.
OR
Using factor theorem, find the value of ' p ' if $x^{3}-p x^{2}-14 x+24$ is exactly divisible by ($\mathrm{x}-2$). Hence factorize the polynomial.

State and prove angle sum property of a triangle.

OR

In the figure, $1 \| \mathrm{m}$. Show that
$\angle 1+\angle 2-\angle 3=180^{\circ}$

Plot $(-2,-1),(5,-1)$ and $(0,4)$ on Cartesian plane. Name the figure formed by joining these points and find the area of the figure so obtained.

28 In the figure, $\mathrm{OA}=\mathrm{OB}, \mathrm{OC}=\mathrm{OD}$ and $\angle \mathrm{AOB}$ $=\angle$ COD. Prove that $\mathrm{AC}=\mathrm{BD}$.

Sides AB, BC and median AD of $\triangle \mathrm{ABC}$ are respectively equal to sides PQ, QR and median PM of $\triangle \mathrm{PQR}$. Prove that $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$.

OR

In the figure, $A B C$ and $A B D$ are such that $A D$ $=\mathrm{BC}, \angle \mathrm{CAD}=\angle \mathrm{DBC}$ and $\angle \mathrm{CAB}=\angle \mathrm{DBA}$. Prove that $\mathrm{BD}=\mathrm{AC}$.

The sides of a triangular park are in the ratio 3:5:7 and its perimeter is 300 m . Find the cost of leveling the park at the rate of $₹ 10$ per m^{2} (Take $\sqrt{3}=1.73$).

End of the Question Paper

